Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors.
نویسندگان
چکیده
Locomotion can be induced in rodents by direct application 5-hydroxytryptamine (5-HT) onto the spinal cord. Previous studies suggest important roles for 5-HT7 and 5-HT2A receptors in the locomotor effects of 5-HT. Here we show for the first time that activation of a discrete population of 5-HT neurons in the rodent brain stem produces locomotion and that the evoked locomotion requires 5-HT7 and 5-HT2A receptors. Cells localized in the parapyramidal region (PPR) of the mid-medulla produced locomotor-like activity as a result of either electrical or chemical stimulation, and PPR-evoked locomotor-like activity was blocked by antagonists to 5-HT2A and 5-HT7 receptors located on separate populations of neurons concentrated in different rostro-caudal regions. 5-HT7 receptor antagonists blocked locomotor-like activity when applied above the L3 segment; 5-HT2A receptor antagonists blocked locomotor-like activity only when applied below the L2 segment. 5-HT7 receptor antagonists decreased step cycle duration, consistent with an action on neurons involved in the rhythm-generating function of the central pattern generator (CPG) for locomotion. 5-HT2A antagonists reduced the amplitude of ventral root activity with only small effects on step cycle duration, suggesting an action directly on cells involved in the output stage of the pattern generator for locomotion, including motoneurons and premotor cells. Experiments with selective antagonists show that dopaminergic (D1, D2) and noradrenergic (alpha1, alpha2) receptors are not critical for PPR-evoked locomotor-like activity.
منابع مشابه
Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord.
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical...
متن کاملAssociate Editor R. M. Harris-Warrick Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice. Abbreviated title: Spinal 5-HT7 receptors and locomotion
5-HT7 receptors have been implicated in the control of locomotion. Here we use 5-HT7 receptor knockout mice to rigorously test whether 5-HT acts at the 5-HT7 receptor to control: 1) locomotor-like activity in the neonatal mouse spinal cord in vitro and 2) voluntary locomotion in adult mice. We found that 5-HT applied onto in vitro spinal cords of 5-HT7 mice produced locomotor-like activity that...
متن کاملSerotonergic Innervation of Cat Spinal Locomotor Neurons
Monoamines are strong modulators and/or activators of spinal locomotor networks. 21 Thus, monoaminergic fibers likely contact neurons involved in generating locomotion. The aim 22 of the present study was to investigate the serotonergic innervation of locomotor-activated 23 neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This 24 was determined by immuno...
متن کاملSpinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.
5-HT7 receptors have been implicated in the control of locomotion. Here we use 5-HT7 receptor knockout mice to rigorously test whether 5-HT acts at the 5-HT7 receptor to control locomotor-like activity in the neonatal mouse spinal cord in vitro and voluntary locomotion in adult mice. We found that 5-HT applied onto in vitro spinal cords of 5-HT7+/+ mice produced locomotor-like activity that was...
متن کاملIs NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
Previous work has established that in vitro bath application of N-methyl-D-aspartic acid (NMDA) promotes locomotor activity in a variety of vertebrate preparations including the neonatal rat spinal cord. In addition, NMDA receptor activation gives rise to active membrane properties that are postulated to contribute to the generation or stabilization of locomotor rhythm. However, earlier studies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005